AutoML beschreibt die Automatisierung maschinellen Lernens. Die Anwendung des Machine Learnings war bislang auf die Expertise spezialisierter Data Scientists angewiesen. Automatisierte ML-Prozesse vereinfachen zahlreiche Schritte und ermöglichen auch weniger erfahrenen Nutzern den Einsatz. Einige Beobachter sehen in der Verbreitung des AutoML ein ähnlich starkes Potential wie einst in der Einführung der automobilen Massenproduktion durch Fließband-Technik. 

AutoML im Überblick

AutoML beschreibt die Automatisierung der Schritte des maschinellen Lernens in der Anwendung auf reale Problemstellungen. AutoML basiert auf künstlicher Intelligenz und bietet eine Lösung für die wachsenden Herausforderungen des Machine Learnings. Eine typische Anwendung des maschinellen Lernens ist auf zahlreiche Prozesse angewiesen. Diese reichen von der Datenvorverarbeitung über das Feature Engineering und die Auswahl des Algorithmus bis zur Optimierung der Parameter. Diese Schritte sind erforderlich, damit die Daten überhaupt für das Machine Learning nutzbar sind. Dies erforderte bislang den Einsatz von Experten, damit das maschinelle Lernmodell die gewünschte prädiktive Leistung erbringt. 

Mit AutoML entwickelt sich ein wichtiger Trend auf KI-Basis, der zu einer einfacheren und schnelleren Lösung für ML-Anforderungen beiträgt. Die Entwicklungen weisen darauf hin, dass AutoML Modelle erstellen kann, die über die Leistung der manuell entworfenen Modelle hinausgeht. Das automatische Machine Learning gilt als Schlüssel zur Vereinfachung des Aufbaus von komplexen KI-Architekturen. Einige Anbieter und Hersteller bieten bereits nutzbare Lösungen aus der Schnittmenge von KI und Machine Learning an. Diese reichen von Anwendungsbereichen wie Spracherkennung und Bilderkennung über Marketing und Verkaufsvorhersagen bis zu Predictive Maintenance (vorausschauende Instandhaltung).

Funktionsweise und Workflow im Machine Learning

Der typische Workflow des Machine Learnings ist ein iterativer Prozess aus Einzelschritten. Dies beginnt mit dem Verständnis sowie der Formulierung der Problemstellung. Anschließend sind relevante Trainings-Daten für das Machine Learning festzulegen und zu erheben. Es folgt die Aufbereitung dieser Daten. Dazu gehören die Daten-Zusammenfassung, ihre Formatierung sowie gegebenenfalls ihre Bereinigung. Auf die Vorbereitung der Daten folgt das Feature Engineering Anschließend sind die Attribute zur Erstellung des Lernmodells zu ermitteln. Infolgedessen kommt es zum Training des Modells. Die Parameter der Algorithmen für das Machine-Learning sind immer weiter zu optimieren. Beim Vergleich verschiedener Lernmodelle ist schließlich das am besten geeignete Modell auszuwählen. Ergebnisse sind zu analysieren und zu visualisieren. Es folgt das Deployment des Modells durch die Generierung von APIs und seine Einbindung in eine Anwendung. Bei der anschließenden Nutzung des Modells in produktiver Umgebung ist es fortlaufend zu kontrollieren und zu überwachen. 

Automatisierbare Prozesse im Workflow

Diese genannten Schritte laufen in vielen Workflows separat und voneinander getrennt ab. Sie sind an entscheidenden Stellen auf das manuelle Eingreifen qualifizierter ML-Experten angewiesen. Das Ziel im AutoML ist es, diese Prozesse automatisiert auszuführen und den manuellen Eingriff zu reduzieren und im Idealfall zu ersetzen. Als Anwender bleibt für dich die Aufgabe, die Daten bereitzustellen und die Vorhersagen am Ende der Learning-Prozesse zu bewerten beziehungsweise sie für konkrete Geschäftsprozesse anwendbar zu machen. 

Viele dieser Prozessschritte im Machine Learning sind für die Automatisierung geeignet. Typischerweise lassen sich die Datenaufbereitung sowie das Feature-Engineering automatisieren. Auch die Auswahl der ML-Algorithmen sowie die Modellauswahl sind automatisierbar. Die schrittweise Optimierung der Parameter und Hyperparameter ist ebenfalls via AutoML realisierbar. Die Analyse und Visualisierung der Ergebnisse sind lassen sich auch automatisieren. Auch das Deployment des entworfenen Modells eignet sich für die Automatisierung. In diesem Zusammenhang ist neben der Bereitstellung von Schnittstellen (APIs) auch die Generierung einer Runtime-Umgebung zu nennen. 

Von besonderem Anspruch ist die Aufgabe des Feature-Engineering. Features stellen messbare Eigenschaften der Datensätze dar. Für diese Eigenschaften existiert zu jeder Beobachtung (Observation) in den Daten ein Wert. Die Generierung neuer Features durch Kombination oder Transformation bereits vorhandener Features nennt sich Feature-Engineering. Hierbei besteht das Ziel darin, die Daten derart zu modifizieren, dass die Algorithmen des Machine Learnings immer mehr Muster identifizieren können. Der Aufwand besteht darin, dass hierbei zahlreiche Alternativen durchgespielt und bewerten werden. Dieser Schritt lässt sich durch automatisierte Deep-Learning-Prozesse und Best Practices deutlich beschleunigen. 

Jede Fragestellung in einem Lernprozess lässt sich grundsätzlich mit verschiedenartigen Algorithmen angehen. Es existieren immer mehr Frameworks für Machine-Learning, die gleiche Algorithmen beinhalten. Die Optimierung der Algorithmen sowie deren Hyperparameter ist bei manueller Handhabung mit viel repetitivem Aufwand verbunden. Mit einer AutoML-Engine lässt sich diese Arbeit parallelisiert und deutlich schneller bewältigen. 

AutoML-Lösungen im Überblick

Der Markt bietet eine Reihe verfügbarer Lösungen für das automatisierte maschinelle Lernen. Dazu gehören Tools und Erleichterungen für die Automatisierung unterschiedlicher Prozessschritte. Einige dieser Tools sind für die lokale Nutzung vorgesehen, während andere auf Cloud-Plattformen laufen. Einige dieser Lösungen bieten dir als Anwender graphische Nutzeroberflächen. Auf diesen kannst Du benutzerdefinierte Modelle für das maschinelle Lernen visuell unterstützt erstellen und trainieren. 

H2O AutoML ist eine Lösung, die eine automatisierte Modellauswahl sowie Modellzusammenstellung ermöglicht. Sie funktioniert auf der H2O-Plattform, einer KI-Plattform für das maschinelle Lernen und die Datenanalyse.

AutoKeras stellt eine Open-Source-Bibliothek auf Python-Basis dar. Auch hier steht das automatisierte maschinelle Lernen im Fokus. 

Google bietet mit dem Konzept Google Cloud AutoML eine vollständige Produkt-Suite für das Machine-Learning. Diese ist in die Cloud-Dienste Googles vollständig eingebunden. Das Angebot richtet sich an Entwickler mit geringen Kenntnissen und will auch diesen die Möglichkeit bieten, anforderungsgerechte Modelle zu trainieren. 

Ebenso Cloud-basiert ist Azure Automated ML. Dieses Angebot basiert auf der Cloud-Plattform von Microsoft Azure. 

AutoWEKA ist eine Lösung, die dir eine gleichzeitige Auswahl des Machine-Learning-Algorithmus und seiner Hyperparameter ermöglicht. Eine Erweiterung AutoWEKAs ist das Konzept Auto-sklearn. Dieses erweitert das Angebot um die Python-Bibliothek scikit-learn. Hierbei handelt es sich um einen Drop-in-Ersatz für scikit-learn Regressoren und Klassifikatoren. 

Das Angebot MLBoX stellt eine Bibliothek für das maschinelle Lernen dar, die über die drei Bestandteile Vorverarbeitung, Optimierung und Vorhersage verfügt. 

Paraboost hat mit seiner Lösung Parapipe ebenfalls eine eigene AutoML entwickelt. Dabei sind eine Vielzahl von Use-Cases im CRM direkt umsetzbar. Die Parapipe geht dabei sogar noch einen Schritt weiter als andere AutoML-Lösungen. Aus rohen Transaktionsdaten werden unmittelbare Prognose-Ergebnisse erzeugt. Kunden können diese Ergebnisse dann direkt in ihre CRM-Systeme einbinden. Dazu bietet es die Möglichkeit die Ergebnisse der AutoML mit eigenen Daten in einem Vorab-Test unverbindlich zu testen.

AutoML Anwendungen und Einsatzbereiche

Die Anwendungsbereiche des AutoML sind vergleichbar vielseitig wie die des herkömmlichen Machine-Learnings. Durch die Einsparung von Zeit und Expertise ist die automatisierte Variante jedoch deutlich schneller und flexibler einsetzbar und damit für mehr potentielle Nutzer interessant.

Typische Anwendungsfelder sind Klassifizierungen aller Art, die sich mit via AutoML generierten Modellen ausführen lassen. Einsatz findet AutoML in der Erstellung, dem Training und in der Optimierung von Modellen des Machine-Learnings zur Lösung verschiedener Probleme. Dabei werden oftmals eine Vielzahl von Modellen als Experimentier-Reihe gerechnet, für die sich der Einsatz von Grafik-Karten eignet. Diese können um bis zu Faktor 5 schneller sein!

Im Marketing kann das automatisierte maschinelle Lernen eingesetzt werden, um Aufgaben des CRM (Customer Relationship Management) rationeller zu bewältigen. Die prädiktive Leistung eignet sich weiterhin, um beispielsweise Verkaufsvorhersagen zu treffen. 

Auch Identifikationsaufgaben, beispielsweise zur Bilderkennung oder zur Spracherkennung gehören zu den Anwendungsfeldern. Auch Textanalyse ist auf AutoML-Basis möglich. 

Robotik und Predictive Maintenance sind weitere Anwendungsfelder. Ein zusätzliches Anwendungsfeld ist die Betrugserkennung.

Fazit und Ausblick VON AUTOML

AutoML birgt großes Potential für unterschiedliche Anwendungsbereiche, die von allgemeinen Klassifizierungen über Marketing bis zur Robotik reichen. AutoML ist ein Beitrag zur Zeit- und Kostenersparnis, da es immer besser ohne KI- oder ML-Experten auskommt. Die große Stärke des AutoML besteht darin, die Einstiegshürden in die KI-Welt zu senken. Auch ohne ausgewiesene Kenntnisse im Bereich Machine-Learning wird es immer einfacher, wertvolle Modelle je nach Anforderung zu trainieren. In Anbetracht dieses Potentials ist AutoML nicht als bloßer Hype zu verstehen, sondern als ein Beitrag, künstliche Intelligenz auch in der Breite nutzbar zu machen. Ebenso wissen auch ML-Fachleute das Potential des AutoML zu schätzen, da der automatisierte Ansatz ihre eigene Arbeit deutlich beschleunigt.